Loading...
机构名称:
¥ 1.0

非对称随机电报信号是在两个能级 y = y 1 和 y = y 2 之间随机切换的信号。它们是对各种物理系统进行测量的常见结果,包括细胞中的离子通道 [1]、晶体管 [2, 3] 等半导体器件、量子点 [4] 和光电器件 [5]、高温超导体 [6] 和单库珀对盒 [7],也是 1 /f 噪声的组成部分 [8]。从 1 (2) 到 2 (1) 的转换率 Γ 1(2) 是描述底层系统动态的可访问参数,通常需要从测量的时间序列中提取它们。最直接的方法是按某个速率 fs 对时域信号进行采样,将其分为状态 1 和 2 中的各一个周期(图 1(a)),对停留时间 τ 1(2) 进行直方图绘制,并根据得到的分布拟合 ke − Γ 1(2) τ 1(2)。但是,噪声和有限的测量带宽的存在会导致测得的统计数据不能准确地代表底层系统。问题有两个方面:一个状态下的噪声可能导致检测到另一个状态下的错误时间周期(图 1(b)),而有限的带宽意味着看不到另一个状态的真正短周期偏移(图 1(c))。后者还会将错过的周期两侧的两个周期连接在一起,导致出现错误的长周期。已经提出了多种解决该问题的方法。一些研究侧重于优化将信号划分为状态 1 和 2 的阈值 [9]。Naaman 和 Aumentado 将检测器建模为一个单独的过程 [10],并对测量的速率进行校正。其他技术包括小波边缘检测 [11]、自相关方法 [12]、互相关方法 [13] 和信号概率密度函数分析 [14, 15]。在本文中,我们证明了循环神经网络可用于从嘈杂、带宽受限的随机电报信号中提取底层速率。神经网络 (NN) 包括一个输入层,其中包含

arXiv:2002.05817v1 [cond-mat.mes-hall] 2020 年 2 月 14 日

arXiv:2002.05817v1 [cond-mat.mes-hall] 2020 年 2 月 14 日PDF文件第1页

arXiv:2002.05817v1 [cond-mat.mes-hall] 2020 年 2 月 14 日PDF文件第2页

arXiv:2002.05817v1 [cond-mat.mes-hall] 2020 年 2 月 14 日PDF文件第3页

arXiv:2002.05817v1 [cond-mat.mes-hall] 2020 年 2 月 14 日PDF文件第4页

arXiv:2002.05817v1 [cond-mat.mes-hall] 2020 年 2 月 14 日PDF文件第5页

相关文件推荐

2020 年
¥1.0